A Revisit to Quadratic Programming with One Inequality Quadratic Constraint via Matrix Pencil
نویسندگان
چکیده
The quadratic programming over one inequality quadratic constraint (QP1QC) is a very special case of quadratically constrained quadratic programming (QCQP) and attracted much attention since early 1990’s. It is now understood that, under the primal Slater condition, (QP1QC) has a tight SDP relaxation (PSDP). The optimal solution to (QP1QC), if exists, can be obtained by a matrix rank one decomposition of the optimal matrix X∗ to (PSDP). In this paper, we pay a revisit to (QP1QC) by analyzing the associated matrix pencil of two symmetric real matrices A and B, the former matrix of which defines the quadratic term of the objective function whereas the latter for the constraint. We focus on the “undesired” (QP1QC) problems which are often ignored in typical literature: either there exists no Slater point, or (QP1QC) is unbounded below, or (QP1QC) is bounded below but unattainable. Our analysis is conducted with the help of the matrix pencil, not only for checking whether the undesired cases do happen, but also for an alternative way otherwise to compute the optimal solution in comparison with the usual SDP/rank-one-decomposition procedure.
منابع مشابه
Matrix pencils and existence conditions for quadratic programming with a sign-indefinite quadratic equality constraint
We consider minimization of a quadratic objective function subject to a sign-indefinite quadratic equality constraint. We derive necessary and sufficient conditions for the existence of solutions to the constrained minimization problem. These conditions involve a generalized eigenvalue of the matrix pencil consisting of a symmetric positivesemidefinite matrix and a symmetric indefinite matrix. ...
متن کاملA NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS
Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...
متن کاملSDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملFGP approach to multi objective quadratic fractional programming problem
Multi objective quadratic fractional programming (MOQFP) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the objecti...
متن کاملSolving A Fractional Program with Second Order Cone Constraint
We consider a fractional program with both linear and quadratic equation in numerator and denominator having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a second order cone programming (SOCP) problem. For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...
متن کامل